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avantage de tenir compte de la g6om6trie mol6culaire et 
de la r6alit6 physique du probl6me, en termes de liaisons 
et d'interactions entre celles-ci. 
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A b s t r a c t  1. I n t r o d u c t i o n  

For diffractometer data collected using a step-scan 
method, various procedures have been proposed by 
which the integrated peak intensity may be estimated 
from the measured reflection profile. However, these all 
ignore some of the information available in the data, 
thereby reducing the accuracy of the estimation. 
Moreover, some make assumptions about structure 
present in the sequence of counts and so produce a 
large positive bias in their estimation of weak reflec- 
tions. A profile-fitting approach based upon the 
Bayesian three-stage regression model is presented, 
which avoids these failings. The underlying theory is 
discussed, its implementation for off-line data reduction 
and its potential for on-line diffractometer control is 
described and its application to various protein data 
sets collected using both single- and multiple-counter 
diffractometers is reported. 

* Present address: Department of Decision Theory, University of 
Manchester, Manchester M 13 9PL, England. 
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For a diffractometer operating in a step-scan mode, 
each reflection is recorded by measuring a sequence of 
counts as the machine steps across the peak and its 
local background. Each count c i is an observation on 
the true (mean) count 2 i at the ith step. Thus 

ci~Pc,(.I2~), i = 1 , 2  . . . .  ,N, (1.1) 

where the notation indicates that each ci is drawn from 
a distribution with parameter 2~. [A fuller explanation 
of the notation used in this paper may be found in 
French (1978).] The distributions ec,(.IXi) are approxi- 
mately Poisson ('counting statistics') with means 2~ but 
are perturbed slightly through instrument instability, 
such as small variations in the strength of the incident 
beam and slight breakdowns in the counting chains, 
and counting losses through saturation of the detector 
for intense reflections. The latter effect is unlikely to be 
of importance in protein crystallography. 

Each 2~ is the sum of two elements: a contribution 
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538 PROFILE FITTING OF DIFFRACTOMETER DATA 

from the intensity of the reflection and a contribution 
from the background scatter. Thus 

~'i = JTc(Xi) + b ( x i ) '  i = 1, 2 . . . .  , N,  (1.2) 

where J is the integrated intensity of the reflection; zr(x) 
is the peak shape function, so f re(x) dx = 1; xi is the 
position in the scan of step i; and b(x i )  is the 
background scatter at x v Thus the problem is to obtain 
an estimate of J together with some indication of the 
precision of this estimate. 

The data available for the estimation of J clearly 
include the sequence of measured counts (c~, c 2 . . . .  , CN), 
but there are other sources of information which are 
often overlooked. In short, these are: (i) the local 
behaviour of the background; this may be predicted 
from the collection geometry, e.g. for co scans b ( x )  will 
be approximately constant throughout the scan; (ii) the 
properties expected in the peak shape, e.g. re(x) is 
continuous and, in most cases, unimodal; (iii) the shape 
of the peaks already analysed; it has been observed that 
peak shape tends to vary only slowly through 
reciprocal space (Diamond, 1969); (iv) the position 
within the scan of the last measured reflection and the 
reliability of the diffractometer in moving from one 
reflection to the next; (v) for a multiple-counter 
diffractometer, the relative positions of the peaks within 
the simultaneously collected scans; this is defined by the 
setting geometry and, moreover, the peak shapes and 
backgrounds on these scans will usually be very similar. 

Various methods have been proposed for the 
estimation of J. The majority base their estimate on the 
sequence of measured counts only, ignoring the sources 
of information (i) to (v). The simplest method is 
background-peak-background integration (BPB). In 
this it is assumed that for every reflection the entire 
peak lies in a window of W steps beginning at the Nwth 
step, i.e. that 

Letting 

and 

XNw+ W -  1 

f 7~(x) d x  = 1. 
XN W 

Nw--  1 N w +  W-- 1 

B l =  ~. % P =  Z ci 
i =  1 i = N w  

N 

B 2 = ~.. ci, 
i = N w + W  

the BPB estimate of the integrated intensity is 

I ( e ) = P - - [ W / ( N - -  W)](B 1 + B2). (1.3) 

If instrument instability and counting losses are ignored 
and the distributions in (1.1) taken to be independent 
Poisson, an estimate of the variance is 

V a r [ I ( e ) l J l = P  + [ W / ( N - -  W)12 (B, + B2). (1.4) 

The main problem with BPB estimation is that in 
order to allow for crystal slippage during data collec- 
tion, the window width must be chosen much larger 
than the peak width. This has two serious effects: 
firstly, the possible precision of the intensity estimate is 
decreased; and secondly, the crystal exposure and 
consequent irradiation damage are increased. 

Various attempts have been made to overcome this 
difficulty. The ordinate analysis method of Watson, 
Shotton, Cox & Muirhead (1970), the method of 
Lehmann & Larsen (1974) and the centroid method of 
Tickle (1975) all use the vector of measured counts to 
centre the peak within the scan, i.e. N w becomes a 
function of e. Thus they compensate for any slight 
crystal slippage and hence enable a smaller window 
width to be used. There are, however, two problems. 
Firstly, for weak reflections noise may dominate the 
scan, resulting in the window being miscentred and a 
positive bias in the estimation [see French (1975), 
Tickle (1975) and Table 1 and Figs. 3-5 below]. It 
should be noted that Tickle's (1975) method is much 
less susceptible to this effect than the others. Secondly, 
since N w is now a random quantity, i.e. because the 
allocation of counts to B~, P and B 2 is now random, the 
variance estimate (1.4) no longer applies. This is shown 
in Table 1 for ordinate analysis. 

None of the foregoing methods use any information 
from sources (i) to (iv) above. When multiple-counter 
data are analysed, part of source (v) may be used; the 
measured counts are notionally shifted by their cal- 
culated relative displacements on the scanning axis and 
then summed to produce a combined profile whose 
peak centre may be determined by either the ordinate 
analysis or centroid methods (Banner, Evans, Marsh & 
Phillips, 1977). Use of this combined profile improves 
the signal-to-noise ratio and reduces the problem of 
miscentring, but difficulties remain where all the 
reflections measured together are weak. This method 
still ignores the similarity between peak shapes and 
between backgrounds for the multiple counters. Thus 
the majority of the information (i) to (v) is wasted and 
as a result the estimation is not as accurate as is 
possible. 

Diamond (1969) has developed a profile-fitting 
method which does attempt to use all the available 
information. His results show it to be considerably 
more successful in the estimation of integrated inten- 
sities than any of the other methods. However, it makes 
use of the information (i) to (v) heuristically, not 
probabilistically, and thus the estimates of variance do 
not truly reflect the precision of his estimated inten- 
sities. Also no account is taken of the continuity in the 
peak shape, or of the positions of the peaks within 
previous scans. 

More recently, Hanson, Watenpaugh, Sieker & 
Jensen (1979) have reported a method which may be 
thought of as an approximation to Diamond's (1969) 
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method and to the one that we present below. It is a 
two-pass procedure which fits Gaussian peak shapes to 
the vectors of counts. On the first pass only the intense 
reflections are fitted and the variation of peak width 
over reciprocal space determined. On the second pass 
this variation is used to predict the peak width of all 
reflections and their intensities are integrated. The 
method is computationally fast and the results are 
encouraging. However, it ignores much of the infor- 
mation from sources (i) to (v) and the estimated 
variance is not a complete reflection of the precision of 
the integrated intensity. Since it is a two-pass pro- 
cedure, it does not have the potential for on-line 
diffractometer control. 

The profile-fitting method described here we believe 
overcomes the various criticisms of the earlier methods. 
The theory underlying the method has already been 
presented briefly (French, 1978; French and Oatley, 
1981), and is given in greater detail in the next section. 
§ 3 contains analyses of simulated data and describes 
practical experience of the method for both single- and 
five-counter data, in particular its successful treatment 
of weak reflections. Some of the approximations used in 
implementing the method on a computer, and summary 
flow diagrams of the main algorithms employed, are 
given in Appendix A. 

2. The Bayesian three-stage model 

Expressions (1.1) and (1.2) indicate that the expected 
value of c i, 

E(ci) = it i = JTr(xi) + b(xi) (2.1) 

for i = 1, 2, ..., N. Our approach to estimating J is to fit 
to the vector of observed counts a function of the form 
[Jn(x,~) + b(x, fl)], where n(x,~) and b(x, fl) are 
parametric approximations to the true peak shape and 
background functions respectively. Since the peak 
shape function should integrate to unity obvious 
candidates for n(x,~) are probability density functions. 
We have found that Johnson's (1949) suggestion for 
transforming the normal density curve leads to families 
of curves which well model the peak shapes that arise in 
protein crystallography. These have four parameters 
= (/a,a,y, cJ), such that 

n(x,~) = ( 6lo v ~ )  ( Ogl Oy) exp {-½[ y + 6g(y) lZ } , 
(2.2) 

where y = (x - p)/o and g(y) is a monotonic increasing 
function (see below). In all cases, n(x, ~) is continuous 
and unimodal. /~ determines the location of the peak 
within the scan and o its width; the parameters y, fi and 
the choice of g(y) together determine the peak shape. 
We have used two choices ofg(y):  

g(y) = sinh-l(y) and g(y) = sinh(y), (2.3) 

which lead to families of curves which are respectively 
more sharply peaked and more fiat-topped than the 
normal. In both cases fi is related to the departure from 
normality and y determines the skewness of the curve, 
symmetry resulting when y = 0. Fig. 1 illustrates the 
wide variety of peak shapes that can result. 

We have found that the peaks arising from a single 
crystal are either consistently sharply peaked or 
consistently fiat-topped over large regions of reciprocal 
space. Thus the function g(y) need not be chosen for 
each reflection, but may be determined by examination 
of the first few peaks to be processed. 

For the backgrounds we have found that a linear 
approximation is adequate: 

b(x,•) = fll + f12 x. (2.4) 

Usually the background is approximately constant 
across the scan, so that f12 ~- 0. 

Other choices of n(x,~)  and b ( x , ~  may be more 
appropriate in other branches of crystallography or for 
other collection geometries. However, it should be 
noted that our profile-fitting method remains applicable 
whatever choices are made. 

As discussed in French (1978) and French & Oatley 
(1981), the Bayesian three-stage model provides a 
natural structuring of estimation problems. In par- 
ticular, it was shown how the problem of estimating J 
may be so structured, using the following three-stage 
model: 

(1) (4) 

/ f 
(2) 

f 
(5) 

(3) 

/ 
(6) 

Fig. 1. Examples of peak shapes obtainable from (2.2) and (2.3). 
Each peak is normalized and has/~ = 0-0 and o = 1.0; for (1) to 
(3), g(y) = sinh-~(y) and for (4) to (6), g(y) = sinh(y): (1) y = 
0.0, ~ = 1.5; (2) y= 0.6, ~= 1-5; (3) y=-0.8 ,  ~= 1.2; (4) ~= 
0.0, 6 = 1.0; (5) y = -0.5, 6 = 1.0; (6) ~, = 0.8, 6 = 1.0. 
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S t a g e  I. Observa t ion  error  

This stage models the counting and instrument 
instability errors in the observations. 

V/-~i ~ N{ V/~, 0.25[ 1 + 0-~ 2~1}. (2.5) 

Here o~ relates specifically to the instrument instability 
errors and it is assumed that errors at different steps in 
the scan are uncorrelated. 

S t a g e  II. Mode l l i ng  error  

This stage describes how well it is expected that the 
parametric approximation [Jn(x,~) + b(x, fl)l will 
model [Jn(x)  + b(x)]. 

~ N(V/-~i, 0.25o22 vt), (2.6) 

where vt = Jn(x~,  ~) + b(x ,  B). 0-z is the relative variance 
of the modelling error. Again it is assumed that errors 
at different steps are uncorrelated. For the reasons 
behind this assumption see French (1978). 

S t a g e  III. Prior  knowledge  

Here information about ~t and fl, learned from the 
previously fitted reflections, is introduced. This pro- 
cedure is described in detail below. 

To solve this model, and hence estimate J and 
determine its variance, 0-~, 0-2 and the structure at the 
third stage must be specified. First we consider 0-~ and 
0" 2 . 

Note from (2.5) and (2.6) that E (V~/ )  = ~ and in 
turn E(V/~/) = V~/" The relation between the first two 
stages is therefore linear and they may be combined: 

~ N(V/~,  0.2511 + 0-1 2i + 0-zz vil). (2.7) 

Moreover, v~ is a good approximation to 2 i so we may 
approximate the variance in (2.7) by 

0.2511 + (0-z + 0-2)vi]" (2.8) 

Thus, 0-I and 0-z z enter the calculations only through 
their sum, e 2 = (0-z + 0-22). Providing that the 
diffractometer operates consistently, we may expect 0-I 
to be constant over the data set. Similarly, unless some 
severe change in the crystal occurs during data 
collection, we may expect 0-~ to be constant. We 
estimate e 2 by repeatedly fitting the first few peaks in 
the data set using different values of e 2. Its value is 
correct when standardized residuals have approxi- 
mately unit variances, i.e. if v~ are calculated from the 
fitted parameters 

1 
( e i -  vi)2/[(1 + e z vi)v i] ~_ 1. (2.9) 

N 
/ = 1  

(To be strictly correct the residuals between ~ and 
should be considered, but there are computational 

advantages in using this approximately equivalent 
form.) 

In French (1978) a general approach to setting the 
prior distributions at stage III was discussed. Here we 
consider the setting of these distributions for our 
choices (2.2) and (2.4) of n(x,~0 and b(x ,  fl) 
respectively. 

A vague prior distribution is one which states that 
nothing is known about the relevant quantity other than 
the information contained in the experimental data. 
Suppose J, the integrated intensity, can be maximally 
105 but is typically of the order of a few hundred. The 
prior distribution 

J ~ N(0, 10 2°) (2.10) 

has an effectively constant density over the range of J 
and thus does not differentially weight the possible 
values; hence the data alone will determine the estimate 
(posterior mean) of J. 

The prior distribution for the parameters ~ = 
(g, 0-, y, b') need not be so vague. Suppose we are setting 
the prior for the sth reflection, after successfully fitting 
the profile at the (s - 1)th reflection, adjacent to it in 
reciprocal space. The posterior distribution for the 
parameters after the (s - 1)th reflection is: 

(ZS_ 1 - ~ N(ms_ a, Ws_~). (2.11) 
~ -  U s -  

~s- 

For our collection geometries, there are no predictable 
changes in ~ between reflections, but it is known that, 
firstly, the peak shape is likely to vary slowly across 
reciprocal space and, secondly, even if there is crystal 
slippage, the peak position within one scan will be very 
close to that for the previous reflection. Hence we may 
use ms_ l as the prior mean of ~s, but increase the 
diagonal terms of W s_ ~ to form the prior variance of ~s: 

0-s 

o~ s = "., N s - l ,  W s - I  + 
Ys ° il U o 

o u~ 

o o u~ 

(2.12) 

2 2 Thus to define the prior for ac s we need to specify u , ,  uo, 
u 2 and u~. Consider, say, g. If the average shift in peak }', 

position between adjacent scans is 0.1 (one-tenth of a 
2 (0.1) 2 is reasonable. step in the scan), then taking u,, = 

The other shift variances may be set similarly. 
Finally, a prior distribution must be set for fl~ and f12 
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as given by (2.4). The background is expected to be 
constant across most scans, thus 

() [(°0t (1°: ° °t] fll ~ N . (2.13) 
fl-- t2 ' 10-1° 

The variance of 1020 corresponds to a vague prior for 
the background level t ,  while the variance 10 -l° forces 
the background slope to remain very close to zero. If it 
is believed that the background actually slopes, a more 
appropriate value should be used, e.g. t 2  might be in the 
range - 1  to + 1, where a prior variance of 1 would be 
reasonable. 

Distributions (2.10), (2.12) and (2.13) together define 
the prior distribution for the third stage. Given these we 
may solve the three-stage model and so estimate J. This 
is not in fact accomplished by the method suggested in 
Appendix A of French (1978) because for large data 
sets the computation would become prohibitive. Instead 
we use a fast approximate solution method which is 
described in the Appendix of this paper. 

Only the setting of the prior distribution for at in the 
simplest case was considered above; a complete flow 
chart of the routine controlling the profile fitting is given 
in Fig. 2. On reading the observed profile for a 
reflection the prior distributions for J, fll and ]~2 a r e  set 
according to (2.10) and (2.13). If the fitting at the last 
reflection was successful and if the current reflection is 
adjacent in reciprocal space, then the prior for at is set 
as given by (2.12). Usually a single cycle of the 
non-linear fitting routine is sufficient to obtain a good fit 
and thus the number of these cycles, maxcyc, is set to 1. 
There are two distinct ways in which the fitting may be 
said to have failed. Firstly, numerical convergence may 
not have been reached, i.e. after maxcyc cycles the 
shifts in the parameters may still be significant. 
Secondly, numerical convergence may have been 
obtained but, nonetheless, the fitted profile may poorly 
represent the data. We check the quality of the fitting 
by a modified Smirnov statistic: 

GI=  m a x  (C i - -  Vi) C i. (2.14) 
n =  1 i =  1 

[ N . B .  Z 2 is a very poor statistic for checking the 
goodness of fit in this case (French, 1975).] The fit is 
considered adequate provided G s is not too large; this 
criterion depends on the strength of the data, the 
number of steps in the scan and the reliability of the 
counters, but it is easy with experience of the method to 
set a suitable limiting value. 

When either type of failure is detected, the prior for at 
is reset to 'free' values (see below), and the fitting 
reattempted, now allowing up to ncyc non-linear cycles 
rather than just 1. 

It would be incorrect to weaken the prior for at as in 
(2.12) when processing has moved to a new region of 
reciprocal space or when, despite resetting the prior for 

at and allowing ncyc non-linear cycles, the fitting at the 
previous reflection failed completely. In these cases, the 
prior for at is set to 'free' values, being either the last 
values satisfactorily fitted or those fitted at the 
beginning of the last row, depending on whichever is 
nearer in reciprocal space, and a diagonal variance 
matrix used which allows the parameters considerable 
freedom during convergence. These variances should be 

2 typically ten times greater than the shift variances u~,, 
u 2, u~,2 and u 2. For the first reflection in the data to be 
fitted, the prior means of at must be specified; suitable 
values can be obtained during the trial fitting of the first 
few peaks undertaken to determine e 2 and the curve 
type. 

Read next peak 
Set priors for J, ill, t2 

l 
New row or convergence failure 
at previous reflection? 

I I 
No Yes 

' I i  
Reset prior for ~ 
to 'free' distribution 
Set maxcyc = ncyc 

Weaken prior for tx 
as (2.12) 
Set maxcyc = 1 

I 
II 

Fitting routine J 

Successful convergence 

1 
Is the profile fit 
satisfactory? 

Yes 

Output intensity 

I 

~ Y e s  

Convergence failure 

Is maxcyc = 1? 

J [ Y e s ~  
No 

1 
Reject reflection 

b 
Are there any more reflections 
to be processed? 

L I 
No 

Exit 

Fig. 2. Flow chart of the routine controlling profile fitting. 
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It is worth returning to the sources of information (i) 
to (v) and indicating how these are assimilated. The 
prior distribution (2.13) and the choice of b(x, fl) allows 
us to represent our knowledge of the behaviour of the 
background, source (i). Our choice of zr(x,~t) rep- 
resents our knowledge of the peak shape (ii), while the 
prior distribution for • introduces our knowledge of its 
similarity for adjacent reflections, sources (iii) and (iv). 
Finally, for multiple counter data, information source 
(v) is modelled by using the same peak parameters to fit 
the reflections on all counters, after having defined the 
origin of x on each scan so that the peak positions share 
the same numerical value. The modelling variance g~, 
and hence e 2, n o w  contains a contribution from the 
variation expected between the simultaneously collected 
peaks. This approach has the computational advantage 
of reducing the number of parameters but, were the 
variation between reflections greater, it would be better 
to allow different peak parameters for each and 
introduce the prior information on their similarity 
exchangeably. For a full treatment of exchangeable 
prior information, see Lindley & Smith (1972). 

3. Tests and practical experience of the method 

The reliability of our profile-fitting method in the 
estimation of the true intensity of a reflection, and in 
particular its ability to analyse weak data successfully, 
was initially examined using simulated reflection 
profiles. Model Gaussian peaks corresponding to 
various integrated intensity values, J, were added to a 
constant background; for each intensity, 250 scans of 
20 steps were generated by superimposing random 
noise according to 'counting statistics' and normally 
distributed instrument instability error. Thus, 

zi ~ J(1/8rc) l /2exp[-0 .5( i -  10)2/4] + 50) 

J ~'t N(Zi ,  0"0009Z2); ci ~ P(Xt) 

i =  1, 2 . . . .  , 20. (3.1) 

The net integrated intensity was obtained both by 
ordinate analysis and by profile fitting. In order to 
ensure that the peak was completely contained within 
the ordinate analysis window, a width of 14 steps was 
used. For the profile fitting, the curve type was that 
given by g(y) = sinh -~ (y) in (2.3), with priors, reset for 
each fit, of E(p) = 10-0, Var(p) = 1.0; E(o) = 10-0, 
Var (o) = 1.0; E(y) = 0.0, Var(y) = 0.5: E(b') = 5.0, 
V a r ( ~  = 0.5; E( J )  = 0.0, Var (J) = 102°; E(fll) = 0.0, 
Var(fll) = 102°; E(fl2) = 0.0, Var(fl2) = 10 -l°. 
Instrument instability error was set at 3%. For each 
generated scan, the posterior probability distribution 
converged to less than 2% within ten cycles. 

The results are summarized in Table 1. For each 
integration method we give three columns. The first 
and second give respectively the mean and standard 
deviation of the sample of 250 integrated intensities. 
The third column gives the mean of their predicted 
standard deviation i.e. the mean of the 250 values given 
by expression (1.4) in the case of ordinate analysis and 
the mean of the 250 values given by the corresponding 
expression for profile fitting. The variation in these 
predicted standard deviations was less than 5% over 
each sample of 250 scans. Ideally the predicted 
standard deviations should be equal to the standard 
deviation of the sample of integrated intensities, i.e. the 
second and third columns should be roughly equal. It is 
clear that ordinate analysis produces a very strong 
positive bias for small intensities, which is still sig- 
nificant at a net intensity of 500, a '10a intensity'. The 
standard deviations predicted by (1.4) over-estimate 
the true variation for small intensities, as discussed in 
§ 2. Profile fitting clearly gives greatly improved results, 
although there is evidence of a slight positive bias, 
which is here probably due to the modelling of the 
Gaussian curve in the simulated data by one derived 
from (2.2) and (2.3). It is, however, of a small enough 
magnitude to have negligible effect on the quality of a 
reduced data set. The predicted standard deviations 
describe the true variation well, and they are con- 

Table 1. Comparison of  the results of  ordinate analysis and profile fitting on the simulated data 

Ordinate analysis Profile fitting 

Mean 
predicted Mean 

Mean Sampled standard Mean Sampled predicted 
T r u e  integrated standard deviation integrated standard standard 

intensity intensity deviation [from ( 1.4)] intensity deviation deviation 

0 48.6 37.0 47.8 --1.0 31.0 24.3 
10 57.9 38.1 47.8 10.6 28.9 24.6 
25 71.2 37.3 48.0 25.8 29.4 25.0 
50 96.3 36.8 48.2 56.3 25.8 25.8 
75 121.9 36.4 48.5 78.6 24.7 26.6 

100 148.9 35.4 48.7 106.9 28.4 27.3 
250 290.9 39.6 50.4 253.9 30.1 31.0 
500 534.3 47.2 52.8 505.5 40.8 36.4 
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Table 2. Protein crystal parameters 

Prealbumin 
Orthorhombic hen egg-white lysozyme 
2-Zinc insulin 
Cubic insulin 
Hagfish insulin 

Space 
group 

P21212 
P212121 
R3 
I213 
P41212 

Resolution 
Cell dimensions (A) (A) 

a = 43.5, b-- 85.7, c = 66.0 1.8 
a = 59.0, b = 68.6, c = 30.4 6 
a = b = 82.5, c = 34.0 1.5 
a = b = c = 78.9 1.7 
a = b = 38-4, c = 85.3 1.9 

siderably reduced for small reflections compared  with 
the ordinate analysis values. 

We will now describe the results of  the application of  
the method to a number  of  data  sets collected on five 
proteins,  whose crystal  parameters  are given in Table 2. 
For  the cubic insulin data,  the overall merging residual, 
R m, was 0.071 for the 10 100 reflections profile fitted to 
1 . 7 A  resolution (Dodson,  Dodson,  Lewitova & 
Sabesan,  1978): 

Rm = Z Z [ I i -  I[ /~  Z Ii, (3.2) 
h i [ h  i 

where I i is the i th observat ion on a set of  equivalent 
terms and I is the weighted mean intensity of  this set. 
Fig. 3 illustrates the profile fitting of  three peaks from a 
sequence of  eight consecutive reflections in these data.  

200 

I00 

PEAK 1 

I0 20 

PEAK 4 I 

10 20 

PEAK 8 

250 

0 r r'3 I I i J J J_~ ~ ~1 
10 20 

Fig. 3. Profile fitting of the three reflections from the cubic insulin 
data. The window positions determined by ordinate analysis are 
indicated by the thick line at the base of each diagram. Peak 1 : 
ordinate analysis: intensity 938.0, e.s.d. 38.0; profile fitting: 
intensity 951.7, e.s.d. 41.2, ~ = 19.76, a = 6.53, y = 1.05, ~ = 
3.76; fll = 41.2; G: = 0.0240. Peak 4: ordinate analysis: 
intensity 132.0, e.s.d. 24.5; profile fitting: intensity 87.5, e.s.d. 
21.6, ~ = 20.30, a = 6.48, y = 1.15, ~ = 3.84; fll = 40.5; G:= 
0.0262. Peak 8: ordinate analysis: intensity 2623.0, e.s.d. 56.3; 
profile fitting: intensity 2723.2, e.s.d. 61.1, ~ = 22.58, a = 6.75, 
y = 0.95, fi = 3.67, fl~ = 43.3; G:= 0.0068. 

The fitted parameters  show little divergence in the 
course of  processing. The ability of  the method,  guided 
by its prior knowledge of  background  level and peak 
shape and position, to distinguish signal from noise is 
illustrated in peak 4 where ordinate analysis has defined 
a peak window too near  the start of  the scan, resulting 
in an over-est imation of  the intensity. It can also be 
seen that  as a result of  crystal  movement  the peak 
posit ion has shifted considerably during this sequence 
and it is encouraging to note how well this has been 
t racked by the fitting. This movement  has resulted in 
the last peak, and also the sixth and seventh in the 
sequence, being seriously 'clipped';  this would invalid- 
ate other methods  of  step-scan integration, but  our  
profile-fitting method,  since it can calculate the total 
area under  the fitted peak, is able to extract  valid 
intensity informat ion from the scan. 

Da ta  have been collected on human  prealbumin 
(Oatley & Burridge, 1981) with the hormones  3,5,3'- 
t r i iodo-L-thyronine (T3) and L-thyroxine (T4) bound,  to 
5.4 and 5.8 A resolution respectively. The ordinates 
were analysed during data  collection by Tickle 's (1975) 
centroid method and were subsequently profile fitted. 
The resulting values ofR m for each data  set are given in 
Table 3, where it can be seen that  the profile fitting has 
significantly improved the internal consistency of  the 
data. Subsequently,  the high-resolution data  sets for the 

Table 3. Compar&on of the merging residuals for 
equivalent reflections in the prealbumin data sets 

Number 
of Centroid Profile 

reflections method fitting 

Prealbumin + T 3 993 0.049 0.036 
Prealbumin + T 4 786 0.043 0.030 

Table 4. Analysis of the 1.5 to 1.7 A resolution shell 
o f  2-Zn insulin data 

Number 
of Ordinate analysis Profile fitting 

sin 2 0/2 2 range reflections (F) R (F)  R 

0.0845-0.0910 1635 33-82 0.304 36.43 0.294 
0.0910-0.0975 1069 34.06 0.308 33.54 0.301 
0.0975-0.1040 1123 36.22 0.317 32.47 0-310 
0.1040-0.1111 1152 33.18 0.327 29.30 0.322 
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two hormone complexes were profile fitted, yielding R m 

values of 0.060 for T 3 t o  1.9 A resolution and 0.066 
for T 4 t o  1.8/~k resolution. 

The high-resolution (1.5 A) data for 2-Zn insulin 
(Dodson, Dodson, Hodgkin & Reynolds, 1979) were 
originally collected using ordinate analysis, and it is 
clear from Table 4 that in the highest-resolution shell, 
1.7 to 1.5 A, there is a severe positive bias in the data, 
since the mean value of F does not decrease with 
increasing resolution. These data were recollected using 
just ten steps across peak and background, and then 
subjected to profile analysis. Three reflections close 
together in reciprocal space are illustrated in Fig. 4. For 
these the centroid and ordinate analysis methods 
produced identical results; profile fitting gives essen- 
tially the same results for the first and third reflections 
but a much more reasonable value for the intensity of 
the second reflection. Overall, the improvement in the 
behaviour of ( F )  is shown in Table 4, which also gives 
the improvement obtained in the crystallographic 
residual R, 

R = Y" I F  o - -  Fcl /~  F o, (3.3) 
h h 2oo  

lOO 

o 
5 IO 

200 

I00 

(B) 

r-CA-- 

0 
5 10 

200 

°°0ll L I I ...... I 
5 l0 

Fig. 4. Profile fitting of  three reflections from the 1.7 to 1.5 ,~ shell 
of the 2-Zn insulin data. The window positions determined by 
both ordinate analysis and the centroid method are indicated by 
the thick line at the base of  each diagram. (A) Ordinate analysis: 
intensity 113.0, e.s.d. 52.0; profile fitting: intensity 125.0, e.s.d. 
54.0, ~ = 4.70, o = 3.30, ? = - 0 . 3 2 ,  ~ = 1.64, flt = 151.0, Gz= 
0.0132. (B) Ordinate analysis: intensity 145.0, e.s.d. 47.0; 
profile fitting: intensity 35.0, e.s.d. 49.0, ~ = 4.70, e = 3.27, ? = 
- 0 . 4 7 ,  ~ = 1.63, fit = 146.0, G z = 0.0455. (C) Ordinate 
analysis: intensity 127.0, e.s.d. 49.0; profile fitting: intensity 
128.0, e.s.d. 56.0, ~ = 4.70, ~ =  3.23, y =  - 0 . 5 2 ,  ~ =  1.62, fl~ = 
154.0, G:= 0.0166. 

with the incorporation of the new data. These R values 
were calculated for the same protein model, i.e. same 
F c, before further refinement. Similar coarse steps 
across peak and background were also used in the data 
collection for hagfish insulin (Cutfield, Cutfield, Dod- 
son, Dodson, Emdin & Reynolds, 1979). 

Integrated intensities to 6/~ resolution were obtained 
for native orthorhombic hen egg-white lysozyme and a 
Pt(CN) 4 derivative both by ordinate analysis and our 
profile method (Artymiuk, Blake, Rice & Wilson, 
1981). The R,n for equivalent reflections, 0.021 for 
native and 0.015 for the derivative (centrics only)were 
the same for both methods. These values may not fairly 
indicate the relative quality of the data sets since the 
ordinate analysis value will tend to be reduced by the 
positive bias inherent in the method. However, an 
indication of the improvement in the quality of the 
reduced data may be obtained from the behaviour of 
the FHL E refinement (Dodson & Vijayan, 1971) of the 
heavy-atom derivative. Here the value of RF, LE, 

RF.LE = Z IFHLE --FHco,~I/Z IFHLE l, (3.4) 
h h 

was reduced overall from 0.378 for the ordinate 
analysis set to 0.358 for the profile fitted set; in 
particular, the highest range of sin 2 0/22, from 0.0056 
to 0.0071, which contained the weakest data, and was 
therefore the region where ordinate analysis was likely 
to produce the poorest isomorphous and anomalous 
differences, showed a reduction from 0.459 to 0.406. 

Both the ordinate analysis and centroid methods 
have been implemented in a modified form on a 
five-counter five-circle diffractometer (Banner, Evans, 
Marsh & Phillips, 1977). As described earlier, these 
analyse a combined profile, and therefore, since the 
peak position is more likely to be correct, suffer less 
from the over-estimation of weak reflections than do the 
single-counter applications. However, we have found 
that our profile method can offer significant advantages 
here too. 

Fig. 5 illustrates some results of fitting quintuplets 
from the high-resolution data sets for native pre- 
albumin (Oatley, 1976; Blake, Geisow, Oatley, R6rat & 
R~rat, 1978) and for prealbumin with T 3 and T 4 bound 
(Oatley & Burridge, 1981). Fig. 5(a) shows a quintuplet 
from a shell of 2.0-2.25 A resolution; here the centroid 
method has found the peak position well and the 
profiles are good fits to the measurements. The fitting 
has ignored the noise at steps 18 and 19 in counter 1. 
Fig. 5(b) shows a very weak quintuplet from a 
1.8-2.0 A shell where the centroid method has failed 
completely and placed the window in the first half of the 
scan. Profile fitting is not misled by the generally higher 
counts here since the resulting peak positions would be 
too far from those previously fitted, and produces 
reasonable results from an extremely low signal-to- 
noise ratio. 
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Fig. 5. Profile fitting of reflections from the multiple counter prealbumin data sets. The window positions calculated by the centroid method 
are indicated by the thick line at the base of  each scan. The integrated intensities calculated by the two methods are given below: 

Counter : (a) 
Centroid method : 
Profile fitting : 

C o u n t e r  

Centroid method 
Profile fitting : 

(d) 

1 2 3 4 5 
65 229 189 581 175 
86 174 182 567 182 

/~ = 9.24, a = 3.75, y = -0.76, 
6 = 2.43, G s = 0.0054 

1 2 3 4 5 
-18 15 86 135 -83 

56 42 64 53 12 

~t = 12.04, a =  2.73, y =  0-08, 
6 = 1-89, G / =  0.0044 

(b) 1 2 3 4 5 
I 1 -14 93 10 -2 
0 4 44 22 24 

/1 = 8.03, o =  4.25, y=  -0.57, 
6 = 1.95, G r = 0.0040 

(e) 1 2 3 4 5 
132 144 17 151 564 
112 247 95 84 545 

/~ = 9.86, o = 3.38, y = -0.24, 
6 =  2.12, Gs= 0.0045 

(c) 1 2 3 4 5 
17 -33 31 65 655 
55 96 70 48 622 

/2= 10-63, o=  3-35, ),= -0.11, 
6 = 2.07, Gs= 0.0057 

( f )  1 2 3 4 5 
32 72 30 36 118 
91 47 40 34 33 

/~ = 9.91, o = 2.05, y = -0.14, 
6 = 1.75, G s = 0.0060 
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The further examples of profile fitting in Figs. 
5(c)-(f) ,  show that, even when the integration window 
is placed in the correct region of the scan, the random 
nature of counting events can cause the ordinate 
analysis and centroid methods to produce poor estim- 
ates of the integrated intensity. A careful comparison of 
these values, and those (frequently very different) 
values calculated by profile fitting, with the observed 
counts shows clearly the superiority of the profile 
method in describing the observed distributions. These 
comments apply equally to single-counter data. 

A good test of the quality of the estimation of the 
integrated intensity is provided by the method used to 
determine scale factors between the five counters of the 
five-circle diffractometer. At the end of the main data 
collection, a separate batch of data is measured which 
consists of overlapping quintuplets of reflections; by 
stepping parallel to the collection axis, a particular 
reflection will be measured sequentially in each of the 
five counters (Evans, 1974). The scale factors between 
the counters are determined from the common reflec- 
tions by the method of Fox & Holmes (1966) and 
usually deviate from unity by less than 5%. The 
merging residuals are evaluated for each of the ten 
combinations of counters (1 and 2, 1 and 3, etc.) and 
their weighted mean values are presented in Table 5 for 
four such batches of data measured on native and 
T3-bound prealbumin. Profile fitting results in a con- 
siderable improvement for each data set. This is 
particularly marked for the T a c* set which is not only 
weak but also has a high background level which is 
likely to introduce greater unrealiability into the 
centroid, or ordinate analysis, estimations. 

4. Discussion 

In the six years since this method was developed, it has 
become established in this laboratory as the standard 
method of evaluation of the integrated intensities of 
diffractometer data. We believe that the results 
described here amply demonstrate its power and 
potential. 

Experience with our method suggests that it can 
provide reliable estimates of integrated intensities and 
their precision over the complete range of intensity 
values and that it is significantly better than some other 
methods for the weakest data. The accurate estimation 

of such data becomes increasingly important as more 
crystal studies are undertaken at very high resolution, 
or where only small crystals are available. Regrettably 
many workers regard weak reflections, usually those 
where I/tr(I) is less than 2 or 3, to be 'not significant' 
and therefore exclude them from the data set. Such a 
criterion depends in any case on having a reliable 
estimate of the standard deviation, which, as we have 
pointed out earlier, is provided by our method but not 
by some others. However, although exclusion of these 
reflections may have the advantage of arbitrarily 
reducing the crystallographic residual, R, it is 
theoretically unjustified for diffractometer data 
(Hirshfeld & Rabinovich, 1973) and with suitable 
weighting it should be advantageous to include all 
measured reflections. In model calculations Hirshfeld & 
Rabinovich (1973) demonstrated how the exclusion of 
the weakest reflections introduces a bias which leads 
to underestimation of the thermal parameter and scale 
factor. Subsequently Arnberg, Hovm611er & Westman 
(1979) showed the improvement attainable in real 
structures through inclusion of all data, and also carried 
out a successful refinement of one structure using only 
data for which I/a(I) < 3.3, which had been originally 
discarded. Similarly, in protein refinement, under- 
estimation of the thermal parameters occurs if data for 
which I/a(I) < 3 are excluded (Oatley, 1981). 

Since protein crystals are particularly sensitive to 
irradiation damage, one may well wish to collect data at 
the maximum possible rate. A number of methods have 
been proposed to accomplish this (e.g. Wyckoff, 
Doscher, Tsernoglou, Inagami, Johnson, Hardman, 
Allwell, Kelly & Richards, 1967; Hanson, Waten- 
paugh, Sieker & Jensen, 1979). These usually combine 
a limited number of counting steps in the region of the 
peak maximum with some form of averaged back- 
ground; this is frequently assumed to be a function of 
20 only and is estimated by scanning between 
reciprocal-lattice rows, although local empirical correc- 
tions may be necessary (Hanson, Watenpaugh, Sieker 
& Jensen, 1979). Our method could operate similarly, 
but we prefer to measure some background in each 
scan to avoid assumptions about its behaviour; an 
accurate value is particularly important in the 
estimation of weak reflections. Rapid data collection 
may entail short count times or coarse stepping 
intervals; the use our method makes of its prior 
knowledge of peak shape and local background enables 
it to derive reliable intensities from such data. as in the 

Table 5. Comparison of the merging residuals for prealbumin counter-counter scaling data 

b* mount 
Native c* mount 

b* mount 
T 3 complex c* mount 

Number 
of Centroid method Profile fitting 

reflections (I) ( Rm) (I) ( Rm) 
740 2144 0.021 2106 0.016 

1695 2191 0.028 2196 0.019 
1090 761 0.037 746 0.028 
800 762 0.067 772 0.039 
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cases described in § 3 above. If our method has a fault, 
it is that it is much more time consuming than, say, 
ordinate analysis. On an ICL 1906A the present 
program requires 0.05 to 0.3 s to process a reflection, 
depending on the number of steps in the scan. Thus 
a complete data set may take 20 min to process. 
Our code is fairly efficient, but could undoubtedly be 
optimized further. However, we would argue that even 
at the present speed the improvement gained in the 
integrated intensities together with the more reliable 
indication of their precision more than justifies the 
computing costs. 

Although our method was developed as, and is 
currently implemented as, an off-line data reduction 
procedure, its various features clearly give it the 
potential for on-line diffractometer control; indeed the 
solution method of the Appendix is derived from one 
developed in control theory (Aoki, 1967). We have 
shown that the method is able to model a wide variety 
of peak shapes. Furthermore it is able to account for 
changes in the width or the shape of the peaks which 
may occur through irradiation during data collection, 
and monitors any sudden transitions. Its ability to track 
crystal slippage would enable it to keep the peaks well 
centred in the scan. It can also identify and, if 
appropriate, make allowances for noise which may 
arise through deficiencies in the counting chains. 
Finally, because the method provides a good estimate 
of the precision of the integrated intensity, it would be 
easy to optimize data collection by measuring each 
reflection to constant relative precision or some similar 
criterion. [See Clegg (1981) for an on-line imple- 
mentation of Diamond's (1969) profile fitting.] 

We are grateful to the members of this laboratory for 
their data and their encouragement and to Professors 
D. V. Lindley and A. J. C. Wilson and Dr J. S. Rollett 
for helpful advice and criticism. SJO is a Mr and Mrs 
John Jaff6 Donation Research Fellow of the Royal 
Society. Financial assistance was also provided by the 
Medical Research Council and the Hayward Foun- 
dation (SF). 

APPENDIX 
A brief description of the profile-fitting algorithm 

As stated in the main body of the paper, we do not use 
the form of iterative linearization suggested in French 
(1978) to solve the three-stage non-linear model; the 
computation for large data sets would be prohibitive. 
Instead we use a block-diagonal approach, which we 
now develop. For generality in the following, suppose 
that there are M counters so that M reflections are 
scanned simultaneously, The algorithm uses the same 
peak parameters to fit the M reflections, and hence 
would need modification if the variation in shape 

between the reflections were sufficiently great to require 
different parameter sets for each. We shall use the 
subscriptj  to index the counters; thus Cg i is the count at 
step i of counter j and so forth. Moreover, xji is the 
position in the scan of step i of counter j ,  but with the 
origin of x chosen for each scan such that the peak 
positions have the same numerical value. (See Banner, 
Evans, Marsh & Phillips, 1977.) We shall also need the 
notation: 

k =  K ( L ) M  the index k increments from an initial 
value of K by intervals L while k < M; 

V~, n(x, o~) the gradient vector of n(x,  ~) with respect 
to ~, x being fixed; 

qj the v e c t o r  (Jj,fljl,flj2) T of true intensity 
and background parameters for counter 

j. 
We begin by noting that we never need estimates of 

the 2~i per se. Thus we may combine stages I and II to 
give [see (2.7) and (2.8)]: 

V/~j/~ N [ ~ j / ,  0'25 (1 +eZvn)] (A.1) 

for j  = I(1)M, i = I(1)N. Next we note that 

= [Jj 7t(xji, =) + flj, + flj2 x"] '/2 J t  

Had the square root not been taken in order to stabilize 
the variance, this equation would have been linear in 
qj = (J j ,  f l j l , f l j2 )  T for fixed ~. This suggests an iterative 
procedure in each cycle of which first the qj , j  = I(1)M, 
are re-estimated for the fixed current estimate ~ and 
then • is re-estimated for the fixed updated estimates of 
qj. This is precisely what we do. The algorithm itself is 
summarized in Fig. 6. However, before we can discuss 
that in detail we need to summarize the solution of a 
Bayesian two-stage model. See Aoki (1967) for the 
proof of the following. 

Lemma. Suppose that 

stage I: Y ~ N ( A ,  0,, C,); (A.2) 

stage II: O, ~ N(A  2 02, C2). (A.3) 

Then, after Y = y has been observed, Po,(.ly) is 
N(O*, D~), where 

g*=A2O2 + K ( y - A , A 2 O ~ ) ,  (A.4) 

K = D, A r C~-', (A.5) 

D]-' = C21 -4- A, r C~-' A,. (A.6) 
The matrix K is shown as the Kalman Filter because it 
'filters out' the information contained in the dis- 
crepancy between the observation y and its prior 
expectation A, A 2 02. 

It is easiest to explain the algorithm by initially 
ignoring the outer loop 1; whenever the expression i = 
k(Ai )N occurs, read instead i = I(1)N. The non-linear 
cycling is controlled by loop 2. If convergence does not 
occur in maxcyc iterations, the fitting is abandoned. 
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Enter with prior distributions 

¢t~ N[E(at), Var (Qt)] 

qj ~ N[E(qj), Var(qj )] , j= I (1)M 

1 
r - -*Loop  I: For k = I(1)Ai 

Sete0* = E(e): q~0 = E(qj),j = I(1)M 

r--~-Loop 2: For l = 1(1) maxcyc  

~--~-Loop 3: For/" = I (1)M 

Get E[qjlcjt, i = k(di)N] See Linear 
and Var [ qjlcjt, i = k(Ai)Nl  segment below 

Set q*t = E[qj Icji , i : k(di)Nl 

. . . .  End of Loop 3 

Get E[ctlcj~,j = I(1)M, i = k(Ai)Nl 
and Var [¢xlcji, j = 1 (1)M, i = k(Ai)N] 

See 
Non-linear 
segment 
below 

Set a~' = E[otlcj~,j = I(1)M, i = k(Ai)Nl  
Is (at* - a t *  ~) significant? 

I I I 
Yes No 

i 
L--~-End of  Loop 2 Branch out of  Loop 2 

Exit - convergence failure [ 
J 

1 
Set E(et) = Qt~, E(qj )  = q~l, J = 1( 1)M 

Set Var (or) = Var[atlcji, j =  I(1)M, i = k(Ai)N] 

Set Var (q j) = Var[qjlcji  , i = k(Ai)Nl , j  = I(1)M 

---*- End of Loop 1 

I 
Reset priors for qj = 1 (1)M to original distributions 

r--~-Loop 4: For  j =  I (1)M 

GetE[ql lc j i ,  i =  I(1)N] 
and VarIqjlcji  , i = I(1)N] 

see Linear 
segment below 

----~End of  Loop 4 

E x i t -  successful numerical convergence 

Linear segment 

Stage I: cji ~ N[a~/qj ,  Var(cji)]  for defined range o f /  
Stage II: qj ~ N[E(qj),  Var(qj)]  

where arji---- [~(Xji'O[~)' 1, )¢ji ] 

Var(c j i )  = vii(1 + e2 Pji) 4- rji 

Initially the current approximation, at*, to the posterior 
expectation of the peak parameters is set to the prior 
expectation. In loop 2 the intensities and backgrounds 
for each counter are first fitted (loop 3) to the observed 
counts assuming that the peak parameters are fixed at 
the values ~ ' - l .  This fitting is achieved by using the 
Kalman filter summarized above in (A.4), (A.5), and 
(A.6) with stages I and II given in (A.2) and (A.3) 
identified with those described in the l inear  s e g m e n t  of 
Fig. 6. Note that the observations are taken to be the 
counts themselves and not their square roots. This is 
because numerical experiments have shown that con- 
vergence is less affected by problems of variance 
dependence than by errors introduced by linearizing the 
square root. Also, of course, the computation is 
reduced. In calculating the variance at each cycle, it is 
important to use the current predicted count, vji, and 
not the observed count cji. If cji is used, low observed 
counts get too high a weight and high observed counts 
get too low a weight. This can result in serious 
under-estimation of the background. Thus Var (cji) is 
taken to be I~ji(1 + e 2 15ji), where l~ j i - -  aTq~(l_l). 
Initially background-peak-background estimates of 
the intensity are used so that vji takes reasonable values 
in the first cycle. 

Having fitted the intensities and backgrounds, a 
linearized two-stage non-linear model is used to update 
the current approximation to the posterior expectations 
of the peak parameters. Here the square roots of the 
observed counts are fitted and not the counts them- 
selves. This has been done because stabilizing the 
weighting scheme seems to give a greater radius of 
convergence to the algorithm. The observations and 
variances given in the description of the non-linear 
segment are calculated using the current approxi- 
mations to the posterior means E[qj lc j i  , i = k ( A i ) N ]  
just found in loop 3. Many of the quantities calculated 
during loop 3 may be saved and used here without 
recalculation. Again the Kalman filtering equations 
(A.4), (A.5), and (A.6) are used to solve the model. To 
determine whether the non-linear cycling has con- 
verged, the shift (0t~' -- a~' 1) is expressed in posterior 
standard deviations as given by Var [~t I cji ,  i = k ( A i ) N ,  
j = I(1)M]. If this is less than a predefined constant, 
convergence is assumed. This comparison is equivalent 
under the assumption of complete normality to check- 
ing whether the posterior probability distribution has 
shifted by less than a predetermined percentage. When 

Non-linear segment 

Stage I: yj~ ~ N[V~r{'~/2}ct, V a r ( y i ) ] v j ~  j =  I(1)M, i = k(Ai)N 
0 (Loop 3) Stage II: ~ ~ N[E(ct), Var(ex)] 

rJ~ = J~[V r ~z(xji,ct*) Var (¢t)V0t zc(xs~,ct* )] (Loop 4) where Yji = c)~ 2 - vJ'~ 2 + vr.~t ~,.ji'tn ~,.,,,_t_l 

VJl = affi q j(/-1)* Var (Yji) = (1 + e 2 vii)~4. 

Fig. 6. Flow diagram of  fitting algorithm. The notation is explained in the text. 
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convergence occurs, processing branches out of loop 2 
and the distributions are updated to take account of the 
fitted data. N.B. the prior distributions for qj and ~ have 
been unchanged until now. To update them iteratively 
in loop 2 would be to lose much of the information that 
they contain and thus be completely wrong. 

It is now convenient to explain loop 1. If there are 
many steps in each scan this algorithm can require 
much core store. In order to reduce this we take 
advantage of a property of Bayesian estimation and, in 
particular, the Kalman filter; we assimilate the data in 
blocks. First steps 1, (Ai + 1), (2Ai + 1), ... in each 
scan are fitted; then steps 2, (Ai + 2), (2Ai + 2), ... and 
so on until all the counts have been fitted. It is 
important to pick the steps in each block in this 
manner; otherwise unfair sampling of the profile can 
lead to biases in the final fitted parameters. 

Now that all the data have been fitted, the intensities 
and backgrounds are completely re-estimated in loop 4. 
Naturally to do so their prior distributions are reset to 
their original values. This re-estimation ensures that 
posterior distributions for the intensities contain all the 
available peak parameter information. Furthermore, it 
eliminates any bias that may have crept in through 
assimilating the data in blocks. There is one very 
important difference between the two-stage model used 
here and that in loop 3: the observations variance now 
includes a contribution from the uncertainty in the peak 
parameters and, hence, the uncertainty in ~z(xji, ~). One 
of the advantages we claim for this profile fitting is that 
the posterior variance for J reflects all the available 
information faithfully. In partitioning the two-stage 
model into a linear and a non-linear segment, the very 
correlations that do this are lost. The term rj~ here 
recaptures this information. It is simply derived from 
the induced variance in the peak shape function. The 
term a~ is the quick background-peak-background 
estimate of the intensity referred to above. 
Theoretically, it would appear to be better to use the 
current estimate from profile fitting. However, if 
something untoward has happened and, although 
numerically the process has converged, practically the 
result is insane, then inflating the variance according to 
the profile-fitted value can cause overflow problems 
before the controlling program can intervene. It should 
be noted that the observation variance may be similarly 
inflated in loop 3. Indeed doing so slightly improves the 
radius of convergence of the algorithm, but at the cost 
of extra computation. 

We have compared the performance of this 
algorithm with the full solution of the three-stage 

non-linear model as described in French (1978). This 
algorithm is significantly faster and achieves essentially 
identical numerical results (French, 1975). In par- 
ticular, the use of the quantity rji to allow for lost 
correlations is extremely successful. 
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